Compressed Air Chiller for Extrusion Blow Molding

Cooling time is the longest part of the total blow molding process and is often extended to get the heat from the part all the way through the wall to the mold. During the mold cooling process, the internal surface of the part (hollow) remains at a much higher temperature than the external surface of the part. The difference between the external and internal surface temperatures in the mold causes material stress and poor product quality. But, extending the cooling time slows the production and shrinks the profit.

Comet’s CAC Compressed Air Chiller is an energy saving, internal cooling system that distributes dry, chilled compressed air (-31°F) inside the product to accelerate heat removal from every surface. This process is guaranteed to reduce material stress and cooling time, as well as dramatically boost production by up to 50% (depending on the product).

Blow pins are specially designed for individual products to guide the air to areas with thicker walls and areas that are not well cooled by the mold. Blow valves are designed to form the product with the highest air pressure available for the process, then drop the air pressure while chilled air is being exchanged inside the product.

Five standard sizes are available with a complete set of blow valves and individually designed blow pins, Process air volumes are between 74.75 SCFM up to 336.5 SCFM.

Advantages of the CAC System

• Increased part quality because heat is removed from inside the molded product.
• Up to 50% production increase (depending on the product) and, in some cases, even higher.
• Suitable for virtually all blow molding machines.
• Microprocessor controller and graphic display for accurate control and data display.
• Easy integration into the production process with fully automatic operation.
• No maintenance required when good air and water quality (industry standard) is provided for the internal air cooling system.
• Low energy consumption and maintenance expenses.
• Quick return on investment.
• No CFC to harm the ozone layer of the earth’s atmosphere.
Specially designed blow pins guarantee optimal exchange of chilled air by guiding the air to areas with thicker walls and areas that are not well-cooled by the mold.

Blow valves are designed to form the product with the highest air pressure available for the process, then drop the air pressure while chilled air is being exchanged inside the product.
Pressure & Continuous Blowing

1. **Cold compressed air inflates the product**
 - Cold compressed air from CAC
 - Valve closed
 - Compressed air to blow pin
 - Warm air from blow pin

2. **Cold compressed flushes the product**
 - Cold compressed air from CAC
 - Valve closed
 - Compressed air to blow pin
 - Warm air from blow pin

3. **Warm exhaust over both silencers**
 - Warm exhaust air
 - Valve closed
 - Warm air from blow pin

Pre-Blowing with Compressed Air

1. **Regular compressed to the blow pin**
 - Regular compressed air to the blow pin
 - Valve closed

2. **Cold, compressed air flushes the product**
 - Cold compressed air from CAC
 - Valve closed
 - Compressed air to blow pin
 - Warm exhaust air
CAC Series Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Electrical Power kW</th>
<th>Compressed Air Connection</th>
<th>Chilled Water Connection</th>
<th>Dimensions in. / mm</th>
<th>Weight lb. / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAC 120</td>
<td>2.2</td>
<td>1*</td>
<td>1/2*</td>
<td>26.75 / 680</td>
<td>611 / 277</td>
</tr>
<tr>
<td>CAC 180</td>
<td>3.0</td>
<td>1*</td>
<td>1/2*</td>
<td>26.75 / 680</td>
<td>617 / 280</td>
</tr>
<tr>
<td>CAC 240</td>
<td>4.5</td>
<td>1*</td>
<td>1/2*</td>
<td>26.75 / 680</td>
<td>683 / 310</td>
</tr>
<tr>
<td>CAC 360</td>
<td>6.1</td>
<td>1½*</td>
<td>1½*</td>
<td>39 / 990</td>
<td>970 / 440</td>
</tr>
<tr>
<td>CAC 540</td>
<td>8.5</td>
<td>1½*</td>
<td>1½*</td>
<td>39 / 990</td>
<td>1080 / 490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Air Flow SCFM / Nm³/h</th>
<th>Min. Air Flow SCFM / Nm³/h</th>
<th>Max. Pressure PSI / bar</th>
<th>Power Consumption kW</th>
<th>Chilled Water Load kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAC 120</td>
<td>74.75 / 120</td>
<td>42.37 / 68</td>
<td>145 - 218 / 10 - 15</td>
<td>2.2</td>
<td>5.0</td>
</tr>
<tr>
<td>CAC 180</td>
<td>112.15 / 180</td>
<td>74.77 / 120</td>
<td></td>
<td>3.0</td>
<td>7.6</td>
</tr>
<tr>
<td>CAC 240</td>
<td>149.50 / 240</td>
<td>99.69 / 160</td>
<td>4.5</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>CAC 360</td>
<td>224.30 / 360</td>
<td>149.53 / 240</td>
<td>6.1</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>CAC 540</td>
<td>336.50 / 540</td>
<td>224.30 / 360</td>
<td>8.5</td>
<td>23.0</td>
<td></td>
</tr>
</tbody>
</table>

Electrical power consumption is based on a standard voltage of 3 x 400V / 50Hz.
Chilled water load is based on air inlet temperature of 95°F (35°C).

We reserve the right to change specifications without prior notice.

Required air quality pressure per ISO 8573.1
- Rest oil: (Kl. 1) 0.01 mg/m³
- Rest humidity: (Kl. 5) + 44.6°F (7°C) pressure dewpoint
- Rest dust: (Kl. 2) 1 µm or 1 mg/m³

Chilled water pressure drop 29 PSI (2 bar),
Air pressure up to 217.5 PSI (15 bar).

Chilled Water Temperature
Max. 59°F (15°C) / Min. 35.5°F (2°C)

Standard voltages (other voltages on request)
- 3 x 400V / 50Hz
- 3 x 460V / 60Hz